Quick Reference

Denitrifying Bioreactor – Hauraki Plains Waikato – New Zealand

Membrane type: Firestone GeoGard EPDM 1.1 mm

Membrane Surface: 168 m² (installed in 2

hours)

Installation date: March 2017

Depth: 1.7 m

Total excavated volume:127 m³
Effective Treatment Volume: 60 m³

Geotextile: 155 g/m²

Even if we might not know the meaning of 'eutrophication', we have all seen green rivers or lakes, caused by a dense algal bloom. This phenomenon arises from the excess of nutrients released into fresh waters from domestic effluent, or industrial and agricultural activities. It is a worldwide environmental concern that reduces aquatic biodiversity and water quality.

Artificial drainage accelerates the pathway, due to short-circuiting, into rivers of nitrates coming from the urine of grazing animals or manure application. Lincoln Agritech and Aqualinc Research have established a pilot-scale denitrifying bioreactor draining an area of 0.65 ha dairy cow grazed paddock. The objective is to determine the optimal design of this practical and cost-effective solution to reduce by 50% the nitrate load discharging from tile drains under New Zealand conditions. The denitrifying bioreactor converts nitrate in the drainage water to harmless nitrogen gas via microbial activity, using only non-treated woodchips as a low-cost and easily available energy source.

Early monitoring results show nitrate levels from 3 to 8.5 mg N/l in the drainage water have been reduced to less than 0.02 mg N/l after passing through the wood chip bioreactor.

Photos and figures courtesy of Lincoln Agritech, Aqualinc Research and Cosio Industries

Quick Reference

Photos and figures courtesy of Lincoln Agritech, Aqualinc Research and Cosio Industries